6 research outputs found

    A computational model of open-irrigated radiofrequency catheter ablation accounting for mechanical properties of the cardiac tissue

    Get PDF
    Radiofrequency catheter ablation (RFCA) is an effective treatment for cardiac arrhythmias. Although generally safe, it is not completely exempt from the risk of complications. The great flexibility of computational models can be a major asset in optimizing interventional strategies, if they can produce sufficiently precise estimations of the generated lesion for a given ablation protocol. This requires an accurate description of the catheter tip and the cardiac tissue. In particular, the deformation of the tissue under the catheter pressure during the ablation is an important aspect that is overlooked in the existing literature, that resorts to a sharp insertion of the catheter into an undeformed geometry. As the lesion size depends on the power dissipated in the tissue, and the latter depends on the percentage of the electrode surface in contact with the tissue itself, the sharp insertion geometry has the tendency to overestimate the lesion obtained, especially when a larger force is applied to the catheter. In this paper we introduce a full 3D computational model that takes into account the tissue elasticity, and is able to capture the tissue deformation and realistic power dissipation in the tissue. Numerical results in FEniCS-HPC are provided to validate the model against experimental data, and to compare the lesions obtained with the new model and with the classical ones featuring a sharp electrode insertion in the tissue.La Caixa 2016 PhD grant to M. Leoni, and Abbott non-conditional grant to J.M. Guerra Ramo

    Heating of hip joint implants in MRI: The combined effect of RF and switched‐gradient fields

    No full text
    Purpose: To investigate how the simultaneous exposure to gradient and RF fields affects the temperature rise in patients with a metallic hip prosthesis during an MRI session. Methods: In silico analysis was performed with an anatomically realistic human model with CoCrMo hip implant in 12 imaging positions. The analysis was performed at 1.5 T and 3 T, considering four clinical sequences: turbo spin-echo, EPI, gradient-echo, and true fast imaging sequence with steady precession. The exposure to gradient and RF fields was evaluated separately and superposed, by adopting an ad hoc computational algorithm. Temperature increase within the body, rather than specific absorption rate, was used as a safety metric. Results: With the exception of gradient-echo, all investigated sequences produced temperature increases higher than 1 K after 360 seconds, at least for one body position. In general, RF-induced heating dominates the turbo spin-echo sequence, whereas gradient-induced heating prevails with EPI; the situation with fast imaging sequence with steady precession is more diversified. The RF effects are enhanced when the implant is within the RF coil, whereas the effects of gradient fields are maximized if the prosthesis is outside the imaging region. Cases for which temperatureincrease thresholds were exceeded were identified, together with the corresponding amount of tissue mass involved and the exposure time needed to reach these limits. Conclusion: The analysis confirms that risky situations may occur when a patient carrying a hip implant undergoes an MRI exam and that, in some cases, the gradient field heating may be significant. In general, exclusion criteria only based on wholebody specific absorption rate may not be sufficient to ensure patients’ safety
    corecore